137 research outputs found

    The Framing of Urban Sustainability Transformations

    Get PDF
    Transformational change is not always intentional. However, deliberate transformations are imperative to achieve the sustainable visions that future generations deserve. Small, unintentional tweaks will not be enough to overcome persistent and emergent urban challenges. Recent scholarship on sustainability transformations has evolved considerably, but there is no consensus on what qualifies transformational change. We describe variations in current discussions of intentional sustainability transformations in the literature and synthesize strategies from funding institutions’ recent requests for proposals for urban sustainability transformations. Research funding initiatives calling for transformational change are increasingly common and are an important driver of how transformational change is articulated in research-practice in cities. From this synthesis, we present seven criteria for transformational change that provide direction for framing and implementing transformational change initiatives

    Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem

    Get PDF
    Abstract. Periphyton succession was studied over 89 d in longitudinally adjacent reaches (a riffle and run) in Sycamore Creek, a spatially intermittent desert stream. Effects of nitrogen limitation were assessed by comparing algal development on clay saucers containing either nitrate-enriched or unenriched agar. We evaluated effects of grazing on periphyton accrual by amending agar in half the substrata from each enrichment condition with an insecticide (Malathion). Early successional (25-d) communities on unenriched substrata were dominated by Epithemta sorex, a diatom capable of N, fixation; non-fixing diatoms dominated enriched communities. NO,-N enrichment increased algal diversity (H') and delayed late-successional dominance by Calothrix, a heterocystous cyanobacterium. Replacement of diatoms by cyanobacteria was likely facilitated by autogenic changes in nutrient and light conditions within the periphyton and temporal increases in water temperature. Three measures of algal biomass exhibited nearly linear increases in all treatments over the 3-mo study. Enrichment enhanced standing crops of chlorophyll a and ash-free dry mass (AFDM) in both reaches, an effect most pronounced within the first 3-4 wk. Algal populations unable to fix N, were stimulated by enrichment but remained in low abundance on unenriched substrata whereas biovolume of N,-fixing populations was lower on enriched substrata relative to controls. Malathion reduced the density of only one common grazer, the moth larva Petrophila jaliscalis, which was abundant only in the riffle. Addition of Malathion to enriched substrata in this habitat had no significant effect on net primary productivity or total algal biovolume but resulted in increased chlorophyll a and AFDM, suggesting that Petrophila did influence algal communities, but by a mechanism that remains unclear. Spatial heterogeneity of nutrient supply in this system contributes to maintenance of algal diversity; but over long successional seres diversity declines regardless of enrichment owing to autogenic changes that occur during succession. Our results confirm earlier observations that low nitrogen availability limits accrual of algal biomass following spates and constrains algal community structure in Sycamore Creek. However, highly significant early successional differences in algal standing crop and community structure among enrichment treatments were eliminated or much reduced in mid to late stages of succession. We propose that this temporal change in enrichment response was caused by development of a thick periphyton mat that reduced availability of both water-column or substratum-derived nutrients to algae, and increased reliance on internal nutrient recycling

    Integrating existing climate adaptation planning into future visions: A strategic scenario for the central Arizona–Phoenix region

    Get PDF
    Cities face a number of challenges to ensure that people’s well-being and ecosystem integrity are not only maintained but improved for current and future generations. Urban planning must account for the diverse and changing interactions among the social, ecological, and technological systems (SETS) of a city. Cities struggle with long-range approaches to explore, anticipate, and plan for sustainability and resilience—and scenario development is one way to address this need. In this paper, we present the framework for developing what we call ‘strategic’ scenarios, which are scenarios or future visions created from governance documents expressing unrealized municipal priorities and goals. While scenario approaches vary based on diverse planning and decision-making objectives, only some offer tangible, systemic representations of existing plans and goals for the future that can be explored as an assessment and planning tool for sustainability and resilience. Indeed, the strategic scenarios approach presented here (1) emphasizes multi-sectoral and interdisciplinary interventions; (2) identifies systemic conflicts, tradeoffs, and synergies among existing planning goals; and (3) incorporates as yet unrealized goals and strategies representative of urban short-term planning initiatives. We present an example strategic scenario for the Central Arizona–Phoenix metropolitan region, and discuss the utility of the strategic scenario in long-term thinking for future sustainability and resilience in urban research and practice. This approach brings together diverse—sometimes competing—strategies and offers the opportunity to explore outcomes by comparing and contrasting their implications and tradeoffs, and evaluating the resulting strategic scenario against scenarios developed through alternative, participatory approaches

    Social, Ecological, and Technological Strategies for Climate Adaptation

    Get PDF
    Resilient cities are able to persist, grow, and even transform while keeping their essential identities in the face of external forces like climate change, which threatens lives, livelihoods, and the structures and processes of the urban environment (United Nations Office for Disaster Risk Reduction, How to make cities more resilient: a handbook for local government leaders. Switzerland, Geneva, 2017). Scenario development is a novel approach to visioning resilient futures for cities. As an instrument for synthesizing data and envisioning urban futures, scenarios combine diverse datasets such as biophysical models, stakeholder perspectives, and demographic information (Carpenter et al. Ecol Soc 20:10, 2015). As a tool to envision alternative futures, participatory scenario development explores, identifies, and evaluates potential outcomes and tradeoffs associated with the management of social–ecological change, incorporating multiple stakeholder’s collaborative subjectivity (Galafassi et al. Ecol Soc 22:2, 2017). Understanding the current landscape of city planning and governance approaches is important in developing city-specific scenarios. In particular, assessing municipal planning strategies through the lens of interactive social–ecological–technological systems (SETS) provides useful insight into the dynamics and interrelationships of these coupled systems (da Silva et al. Sustain Dev 4(2):125–145, 2012). An assessment of existing municipal strategies can also be used to inform future adaptation scenarios and strategic plans addressing extreme weather events. With the scenario development process guiding stakeholders in generating goals and visions through participatory workshops, the content analysis of governance planning documents from the SETS perspective provides key insight on specific strategies that have been considered (or overlooked) in cities. In this chapter, we (a) demonstrate an approach to examine how cities define and prioritize climate adaptation strategies in their governance planning documents, (b) examine how governance strategies address current and future climate vulnerabilities as exemplified by nine cities in North and Latin America where we conducted a content analysis of municipal planning documents, and (c) suggest a codebook to explore the diverse SETS strategies proposed to address climate challenges—specifically related to extreme weather events such as heat, drought, and flooding

    Setting the Stage for Co-Production

    Get PDF
    Participatory scenario visioning aims to expose, integrate, and reconcile perspectives and expectations about a sustainable, resilient future from a variety of actors and stakeholders. This chapter considers the settings in which transdisciplinary participatory visioning takes place, highlighting lessons learned from the Urban Resilience to Extremes Sustainability Research Network (UREx SRN). It reflects on the benefits of engaging in the co-production process and the challenges that must be considered amid this process

    Can uptake length in strams be determined by nutrient addition experiments? Results from an interbiome comparison study

    Get PDF
    Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship between uptake length determined by nutrient addition experiments (Sw\u27) and uptake length determined by tracer additions (Sw)predicted that Sw\u27 should be consistently longer than 5, , and that the overestimate of uptake length by Sw( should be related to the level of nutrient addition above ambient concentrations and the degree of nutrient limitation. To test these predictions, we used data irom an interbiorne study of NH,- uptake length in which 15NH,- tracer and short-term NH,-a ddition experiments were performed in 10 streams using a uniform experimental approach. The experimental results largely contirmed the theoretical predictions: sw\u27 was consistently longer than Sw and Sw\u27:Sw ratios were directly related to the level of NH,- addition and to indicatvrs of N limitation. The experimentally derived Sw\u27:Sw, ratios were used with the theoretical results to infer the N limitation status of each stream. Together, the theoretical and experimental results showed the tracer experiments should be used whenever possible to determine nutrient uptake length in streams. Nutrient addition experiments may be useful for comparing uptake lengths between different streams or cliiferent times in the same stream. however, provided that nutrient additions are kept as low as possible and of similar miagnitude

    A Framework for Resilient Urban Futures

    Get PDF
    Resilient urban futures provides a social–ecological–technological systems (SETS) perspective on promoting and understanding resilience. This chapter introduces the concepts, research, and practice of urban resilience from the Urban Resilience to Extremes Sustainability Research Network (UREx SRN). It describes conceptual and methodological approaches to address how cities experience extreme weather events, adapt to climate resilience challenges, and can transform toward sustainable and equitable future

    Consequences of an ecosystem state shift for nitrogen cycling in a desert stream

    Full text link
    Cessation of cattle grazing has resulted in the reestablishment of wetlands in some streams of the U.S. Southwest. Decades of cattle grazing prevented vascular plant growth in Sycamore Creek (Arizona, U.S.A.), resulting in stream reaches dominated by diatoms and filamentous green algae. Establishment of vascular plants can profoundly modify ecosystem processes; yet, the effects on nitrogen (N) cycling remain unexplored. We examined the consequences of this ecosystem state shift on N cycling in this N-limited desert stream. We compared results from whole-reach ammonium-N stable isotope (15NH4+) tracer additions conducted before (pre-wetland state) and 13 yr after (wetland state) free-range cattle removal from the watershed. Water column estimations showed that in-stream N uptake and storage were higher in the pre-wetland than in the wetland state. N turnover was also higher in the pre-wetland state, indicating that assimilated N was retained for shorter time in stream biomass. In addition, N uptake was mostly driven by assimilatory uptake regardless of the ecosystem state considered. Water column trends were mechanistically explained by the fact that the dominant primary uptake compartments in the pre-wetland state (i.e., algae and diatoms) had higher assimilatory uptake and turnover rates than those in the wetland state (i.e., vascular plants). Overall, results show that the shift in the composition and dominance of primary producers induced by the cessation of cattle grazing within the stream-riparian corridor changes in-stream N processing from a dominance of intense and fast N recycling to a prevalence of N retention in biomass of primary producers

    Positive Futures

    Get PDF
    We describe the rationale and framework for developing scenarios of positive urban futures. The scenario framework is conducted in participatory workshop settings and composed of three distinct scenario approaches that are used to (1) explore potential outcomes of existing planning goals (strategic scenarios), (2) articulate visions that address pressing resilience challenges (adaptive scenarios), and (3) envision radical departures from the status quo in the pursuit of sustainability and equity (transformative scenarios). A series of creative and analytical processes are used to engage the community in imagining, articulating, and scrutinizing visions and pathways of positive futures. The approach offers an alternative and complement to traditional forecasting techniques by applying inspirational stories to resilience research and practice

    Assessing Future Resilience, Equity, and Sustainability in Scenario Planning

    Get PDF
    In the absence of strong international agreements, many municipal governments are leading efforts to build resilience to climate change in general and to extreme weather events in particular. However, it is notoriously difficult to guide and activate processes of change in complex adaptive systems such as cities. Participatory scenario planning with city professionals and members of civil society provides an opportunity to coproduce positive visions of the future. Yet, not all visions are created equal. In this chapter, we introduce the Resilience, Equity, and Sustainability Qualitative (RESQ) assessment tool that we have applied to compare positive scenario visions for cities in the USA and Latin America. We use the tool to examine the visions of the two desert cities in the Urban Resilience to Extreme Events Sustainability Research Network (UREx SRN), which are Hermosillo (Mexico) and Phoenix (United States)
    • …
    corecore